summaryrefslogtreecommitdiff
path: root/uncertainty.mdwn
blob: 993403ac97cf25cf650fc322ec4a9a02ddcdf681 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
[[!meta title="Uncertainty Team Home"]]

[[!img uncertainty.png]]

[[[[!img TridentSpin/trident-2-dnsc8906614.jpg size="250x192" alt="Uncertainty Team Logo" link=no class="picture"]]|TridentSpin]]

The uncertainty team is tasked with achieving things that are unpredictable and very challenging. Of course, things which are certain and easily understood will be handled by other [[Teams]].

We're doing research and implementation of probabilistic algorithms. In particular we are interested in all sorts of filtering: kalman unscented, kalman extended, sigma point kalman, particle and others. These are useful in estimating the position and orientation of a rocket given a diverse array of sensor inputs, all of which are incorrect in their own way. Without such estimation and eventually feeding back this information to our system, controlling a rocket's trajectory can be hugely difficult.

Please join our mailing list, or better yet stop by one of our meetings, we'd love to have your help!

**Meetings:** The uncertainty team meets weekly with the main group. See the [[PSAS schedule page|Schedule]] for upcoming meetings.

**Uncertainty Team Mailing list:** [psas-avionics](http://lists.psas.pdx.edu/mailman/listinfo/psas-avionics)

[[!toc levels="3"]]

## Current projects

- Testing and improving our Bayesian Particle Filtering (BPF) implementation in our [simulated rocket](http://git.psas.pdx.edu/?p=event-driven-fc.git) environment.
- [[Flight simulations|simulation]]

## Local Resources

- [[Introduction to the Kalman fiter|KalmanIntro]]
- [[Introduction to state space representations|StateSpace]]
- [[Example:INS Aiding and Error Analysis in 1-D|Example1D]]
- [[ActiveGuidance]] system links and notes.
- [[Comparison|orbital_vehicle_comparison]] of small orbital vehicles
- [[Roll Control|RollControl]]

## More Uncertainty team pages
- [[books|books]]
- [[implementations|implementations]]
- [[papers|papers]]
- [[rocket_model|rocket_model]]
- [[to-do|to-do]]

## Tutorials

- [Some tutorials, references, and research on the Kalman filter](http://www.cs.unc.edu/~welch/kalman/) at the [Department of Computer Science](http://www.cs.unc.edu/) at the [University of North Carolina at Chapel Hill](http://www.unc.edu/)
- [Wikipedia article](http://en.wikipedia.org/wiki/Kalman_filter)
- [Engineers Look to Kalman Filtering for Guidance](http://www.siam.org/siamnews/mtc/mtc893.htm): Barry Cipra, SIAM News, Vol. 26, No. 5, August 1993
- [Kalman Filters](http://cnx.rice.edu/content/m11438/latest/) at [Connexions](http://cnx.rice.edu/)
- Taygeta's [Kalman Filter Information](http://www.taygeta.com/kalman.html) and reading list
- [Kalman Filtering, Dan Simon, Innovatia Software](http://www.innovatia.com/software/papers/kalman.htm)


## Other Web Links

### General introductory material:

- [Wikipedia article](http://en.wikipedia.org/wiki/Kalman_filter)
- [Engineers Look to Kalman Filtering for Guidance](http://www.siam.org/siamnews/mtc/mtc893.htm): Barry Cipra, SIAM News, Vol. 26, No. 5, August 1993
- [Some tutorials, references, and research on the Kalman filter](http://www.cs.unc.edu/~welch/kalman/) at the [Department of Computer Science](http://www.cs.unc.edu/) at the [University of North Carolina at Chapel Hill](http://www.unc.edu/)
- [Kalman Filters](http://cnx.rice.edu/content/m11438/latest/) at [Connexions](http://cnx.rice.edu/)
- Taygeta's [Kalman Filter Information](http://www.taygeta.com/kalman.html) and reading list
- [Kalman Filtering, Dan Simon, Innovatia Software](http://www.innovatia.com/software/papers/kalman.htm)

### Kalman filter extensions:

- [The Unscented Kalman Filter for Nonlinear Estimation](http://cslu.cse.ogi.edu/nsel/ukf/)
- [EnKF-The Ensemble Kalman Filter](http://www.nersc.no/~geir/EnKF/)

### Other Useful Information:

- [Octave vs MatLab](http://www.bio.vu.nl/thb/deb/deblab/debtool/first_oct_matl.html)

### Haskell resources:

- [Matt's DSP library](http://haskelldsp.sourceforge.net): Modules for matrix manpulation, digital signal processing, spectral stimation and frequency estimation
- [HAT: The Haskell Tracer](http://www.cs.york.ac.uk/fp/hat/#intro): Source level tracer for ghc and nhc98